A short circuit (sometimes abbreviated to short or s/c) is an electrical circuit that allows a Electric current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit. The opposite of a short circuit is an open circuit, which is an infinite resistance (or very high impedance) between two nodes.
In circuit analysis, a short circuit is defined as a connection between two nodes that forces them to be at the same voltage. In an 'ideal' short circuit, this means there is no resistance and thus no voltage drop across the connection. In real circuits, the result is a connection with almost no resistance. In such a case, the current is limited only by the resistance of the rest of the circuit.
A high current flowing through a battery can cause a rapid increase of temperature, potentially resulting in an explosion with the release of hydrogen gas and electrolyte (an acid or a base), which can burn tissue and cause blindness or even death. Overloaded wires will also overheat causing damage to the wire's insulation, or starting a fire.
In electrical devices, unintentional short circuits are usually caused when a wire's insulation breaks down, or when another conducting material is introduced, allowing charge to flow along a different path than the one intended.
In mains circuits, short circuits may occur between two Polyphase system, between a phase and neutral or between a phase and earth (ground). Such short circuits are likely to result in a very high current and therefore quickly trigger an overcurrent protection device. However, it is possible for short circuits to arise between neutral and earth conductors and between two conductors of the same phase. Such short circuits can be dangerous, particularly as they may not immediately result in a large current and are therefore less likely to be detected. Possible effects include unexpected energisation of a circuit presumed to be isolated. To help reduce the negative effects of short circuits, power distribution transformers are deliberately designed to have a certain amount of leakage reactance. The leakage reactance (usually about 5 to 10% of the full load impedance) helps limit both the magnitude and rate of rise of the fault current. A short circuit may lead to formation of an electric arc. The arc, a channel of hot ionized plasma, is highly conductive and can persist even after significant amounts of original material from the conductors has evaporated. Surface erosion is a typical sign of electric arc damage. Even short arcs can remove significant amounts of material from the electrodes. The temperature of the resulting electrical arc is very high (tens of thousands of degrees), causing the metal on the contact surfaces to melt, pool and migrate with the current, as well as to escape into the air as fine particulate matter.
In an improper installation, the overcurrent from a short circuit may cause ohmic heating of the circuit parts with poor conductivity (faulty joints in wiring, faulty contacts in power sockets, or even the site of the short circuit itself). Such overheating is a common cause of . An electric arc, if it forms during the short circuit, produces high amount of heat and can cause ignition of combustible substances as well.
In industrial and utility distribution systems, dynamic forces generated by high short-circuit currents cause conductors to spread apart. Busbars, cables, and apparatus can be damaged by the forces generated in a short circuit.
|
|